Français
France
s'inscrire
Conseils d'eurolivre.fr
Livres similaires
Autres livres qui pourraient ressembler au livre recherché:
Outils de recherche
Livre conseillé
Actualités
Publicité
FILTRE
- 0 Résultats
prix le plus bas: 26,95 €, prix le plus élevé: 34,00 €, prix moyen: 32,24 €
Wallenius' Noncentral Hypergeometric Distribution
Livre non disponible
(*)
Wallenius' Noncentral Hypergeometric Distribution - Livres de poche

ISBN: 6130322399

Edition reliée, ID: 6082100

Probability Theory, Statistics, Hypergeometric Distribution, Sampling Bias, Urn Problem, Fisher's Noncentral Hypergeometric Distribution, Competition - Buch, gebundene Ausgabe, 80 S., Beilagen: Paperback, Erschienen: 2010 Betascript Publishers High Quality Content by WIKIPEDIA articles! In probability theory and statistics, Wallenius' noncentral hypergeometric distribution is a generalization of the hypergeometric distribution where items are sampled with bias. This distribution can be illustrated as an urn model with bias. Assume, for example, that an urn contains m1 red balls and m2 white balls, totalling N = m1 + m2 balls. Each red ball has the weight 1 and each white ball has the weight 2. We will say that the odds ratio is = 1 / 2. Now we are taking n balls, one by one, in such a way that the probability of taking a particular ball at a particular draw is equal to its proportion of the total weight of all balls that lie in the urn at that moment. The number of red balls x1 that we get in this experiment is a random variable with Wallenius' noncentral hypergeometric distribution.

Nouveaux livres DE Buch24.de
Frais d'envoiVersandkostenfrei innerhalb der BRD, Livraison non-comprise
Details...
(*) Livre non disponible signifie que le livre est actuellement pas disponible à l'une des plates-formes associées nous recherche.
Wallenius' Noncentral Hypergeometric Distribution - Herausgeber: Marseken, Susan F., Surhone, Lambert M., Timpledon, Miriam T.
Livre non disponible
(*)
Herausgeber: Marseken, Susan F., Surhone, Lambert M., Timpledon, Miriam T.:
Wallenius' Noncentral Hypergeometric Distribution - Livres de poche

2009, ISBN: 9786130322397

[ED: Softcover], [PU: Betascript Publishing], High Quality Content by WIKIPEDIA articles! In probability theory and statistics, Wallenius' noncentral hypergeometric distribution is a generalization of the hypergeometric distribution where items are sampled with bias. This distribution can be illustrated as an urn model with bias. Assume, for example, that an urn contains m1 red balls and m2 white balls, totalling N = m1 + m2 balls. Each red ball has the weight 1 and each white ball has the weight 2. We will say that the odds ratio is = 1 / 2. Now we are taking n balls, one by one, in such a way that the probability of taking a particular ball at a particular draw is equal to its proportion of the total weight of all balls that lie in the urn at that moment. The number of red balls x1 that we get in this experiment is a random variable with Wallenius' noncentral hypergeometric distribution.2009. 80 S.Versandfertig in 3-5 Tagen, [SC: 0.00]

Nouveaux livres Booklooker.de
buecher.de GmbH & Co. KG
Frais d'envoiVersandkostenfrei, Versand nach Deutschland (EUR 0.00)
Details...
(*) Livre non disponible signifie que le livre est actuellement pas disponible à l'une des plates-formes associées nous recherche.
Wallenius' Noncentral Hypergeometric Distribution - Herausgeber: Marseken, Susan F., Surhone, Lambert M., Timpledon, Miriam T.
Livre non disponible
(*)
Herausgeber: Marseken, Susan F., Surhone, Lambert M., Timpledon, Miriam T.:
Wallenius' Noncentral Hypergeometric Distribution - Livres de poche

2009, ISBN: 9786130322397

[ED: Softcover], [PU: Betascript Publishing], High Quality Content by WIKIPEDIA articles! In probability theory and statistics, Wallenius' noncentral hypergeometric distribution is a generalization of the hypergeometric distribution where items are sampled with bias. This distribution can be illustrated as an urn model with bias. Assume, for example, that an urn contains m1 red balls and m2 white balls, totalling N = m1 + m2 balls. Each red ball has the weight 1 and each white ball has the weight 2. We will say that the odds ratio is = 1 / 2. Now we are taking n balls, one by one, in such a way that the probability of taking a particular ball at a particular draw is equal to its proportion of the total weight of all balls that lie in the urn at that moment. The number of red balls x1 that we get in this experiment is a random variable with Wallenius' noncentral hypergeometric distribution. 2009. 80 S. Versandfertig in 3-5 Tagen

Nouveaux livres Booklooker.de
buecher.de GmbH & Co. KG
Frais d'envoizzgl. Versand, Livraison non-comprise
Details...
(*) Livre non disponible signifie que le livre est actuellement pas disponible à l'une des plates-formes associées nous recherche.
Wallenius' Noncentral Hypergeometric Distribution
Livre non disponible
(*)
Wallenius' Noncentral Hypergeometric Distribution - Livres de poche

2010, ISBN: 6130322399

Edition reliée, ID: 6082100

Probability Theory, Statistics, Hypergeometric Distribution, Sampling Bias, Urn Problem, Fisher's Noncentral Hypergeometric Distribution, Competition - Buch, gebundene Ausgabe, 80 S., Beilagen: Paperback, Erschienen: 2010 Betascript Publishers

Nouveaux livres Buch24.de
buch24de
Frais d'envoiLivraison non-comprise
Details...
(*) Livre non disponible signifie que le livre est actuellement pas disponible à l'une des plates-formes associées nous recherche.

Détails sur le livre
Wallenius' Noncentral Hypergeometric Distribution: Probability Theory, Statistics, Hypergeometric Distribution, Sampling Bias, Urn Problem, Fisher's Noncentral Hypergeometric Distribution, Competition

High Quality Content by WIKIPEDIA articles! In probability theory and statistics, Wallenius' noncentral hypergeometric distribution is a generalization of the hypergeometric distribution where items are sampled with bias. This distribution can be illustrated as an urn model with bias. Assume, for example, that an urn contains m1 red balls and m2 white balls, totalling N = m1 + m2 balls. Each red ball has the weight 1 and each white ball has the weight 2. We will say that the odds ratio is = 1 / 2. Now we are taking n balls, one by one, in such a way that the probability of taking a particular ball at a particular draw is equal to its proportion of the total weight of all balls that lie in the urn at that moment. The number of red balls x1 that we get in this experiment is a random variable with Wallenius' noncentral hypergeometric distribution.

Informations détaillées sur le livre - Wallenius' Noncentral Hypergeometric Distribution: Probability Theory, Statistics, Hypergeometric Distribution, Sampling Bias, Urn Problem, Fisher's Noncentral Hypergeometric Distribution, Competition


EAN (ISBN-13): 9786130322397
ISBN (ISBN-10): 6130322399
Version reliée
Livre de poche
Date de parution: 2010

Livre dans la base de données depuis 03.04.2009 09:08:19
Livre trouvé récemment le 14.08.2013 15:08:58
ISBN/EAN: 9786130322397

ISBN - Autres types d'écriture:
613-0-32239-9, 978-613-0-32239-7


< pour archiver...
Livres en relation