. .
Français
France
Livres similaires
Autres livres qui pourraient ressembler au livre recherché:
Outils de recherche
s'inscrire

Connectez-vous avec Facebook:

S'inscrire
Mot de passe oublié?


Historique de recherche
Liste pense-bête
Liens vers eurolivre.fr

Partager ce livre sur…
Livre conseillé
Actualités
Conseils d'eurolivre.fr
Publicité
Annonce payée
FILTRE
- 0 Résultats
prix le plus bas: 126,99 €, prix le plus élevé: 180,88 €, prix moyen: 151,17 €
Applications of Turbulent and Multi-Phase Combustion - Kenneth Kuan-yun Kuo
Livre non disponible
(*)
Kenneth Kuan-yun Kuo:

Applications of Turbulent and Multi-Phase Combustion - nouveau livre

2013, ISBN: 9781118130681

ID: 9781118130681

InhaltsangabePreface xvii1 Solid Propellants and Their Combustion Characteristics 11.1 Background of Solid Propellant Combustion, 41.1.1 Definition of Solid Propellants, 41.1.2 Desirable Characteristics of Solid Propellants, 41.1.3 Calculation of Oxygen Balance, 51.1.4 Homogeneous Propellants, 61.1.4.1 Decomposition Characteristics of NC, 61.1.5 Heterogeneous Propellants (or Composite Propellants), 71.1.6 Major Types of Ingredients in Solid Propellants, 81.1.6.1 Description of Oxidizer Ingredients, 101.1.6.2 Description of Fuel Binders, 121.1.6.3 Curing and Cross-Linking Agents, 141.1.6.4 Aging, 151.1.7 Applications of Solid Propellants, 161.1.7.1 Hazard Classifications of Solid Propellants, 161.1.8 Material Characterization of Propellants, 161.1.8.1 Propellant Density Calculation, 161.1.8.2 Propellant Mass Fraction, , 171.1.8.3 Viscoelastic Behavior of Solid Propellants, 171.1.9 Thermal Profile in a Burning Solid Propellant, 181.1.9.1 Surface and Subsurface Temperature Measurements of Solid Propellants, 181.1.9.2 Interfacial Energy Flux Balance at the Solid Propellant Surface, 201.1.9.3 Energy Equation for the Gas Phase, 211.1.9.4 Burning Rate of Solid Propellants, 231.1.9.5 Temperature Sensitivity of Burning Rate, 251.1.9.6 Measurement of Propellant Burning Rate by Using a Strand Burner, 261.1.9.7 Measurement of Propellant Burning Rate by Using a Small-Scale Motor, 371.1.9.8 Burning Rate Temperature Sensitivity of Neat Ingredients, 411.2 Solid-Propellant Rocket and Gun Performance Parameters, 431.2.1 Performance Parameters of a Solid Rocket Motor, 441.2.1.1 Thrust of a Solid Rocket Motor, 441.2.1.2 Specific Impulse of a Solid Rocket Motor, 481.2.1.3 Density-Specific Impulse, 561.2.1.4 Effective Vacuum Exhaust Velocity, 581.2.1.5 Characteristic Velocity C & lowast , 581.2.1.6 Pressure Sensitivity of Burning Rate, 591.2.1.7 Thrust Coefficient Efficiency, 601.2.1.8 Effect of Pressure Exponent on Stable/Unstable Burning in Solid Rocket Motor, 601.2.2 Performance Parameters of Solid-Propellant Gun Systems, 611.2.2.1 Energy Balance Equation, 641.2.2.2 Efficiencies of Gun Propulsion Systems, 671.2.2.3 Heat of Explosion (Ho ex), 691.2.2.4 Relative Quickness, Relative Force, and Deviations in Muzzle Velocity, 701.2.2.5 Dynamic Vivacity, 712 Thermal Decomposition and Combustion of Nitramines 722.1 Thermophysical Properties of Selected Nitramines, 762.2 Polymorphic Forms of Nitramines, 782.2.1 Polymorphic Forms of HMX, 802.2.2 Polymorphic Forms of RDX, 822.3 Thermal Decomposition of RDX, 882.3.1 Explanation of Opposite Trends on & alpha - and & beta -RDX Decomposition with Increasing Pressure, 902.3.2 Thermal Decomposition Mechanisms of RDX, 922.3.2.1 Homolytic N& ndash N Bond Cleavage, 922.3.2.2 Concerted Ring Opening Mechanism of RDX, 942.3.2.3 Successive HONO Elimination Mechanism of RDX, 962.3.2.4 Analysis of Three Decomposition Mechanisms, 1042.3.3 Formation of Foam Layer Near RDX Burning Sur Homogeneous Propellants, 1583.5.1 Dark Zone Residence Time Correlation, 1663.6 Modeling and Prediction of Homogeneous Propellant Combustion Behavior, 1673.6.1 Multi-Ingredient Model of Miller and Anderson, 1713.6.1.1 NC: A Special Case Ingredient, 1723.6.1.2 Comparison of Calculated Propellant Burning Rates with the Experimental Data, 1753.7 Transient Burning Characterization of Homogeneous Solid Propellant, 1873.7.1 What is Dynamic Burning , 1883.7.2 Theoretical Models for Dynamic Burning, 1903.7.2.1 dp/dt Approach, 1933.7.2.2 Flame Description Approach, 1943.7.2.3 Zel& rsquo dovich Approach, 1943.7.2.4 Characterization of Dynamic Burning of JA2 Propellant Using the Zel& rsquo dovich Approach, 1963.7.2.5 Experimental Measurement of Dynamic Burning Rate of JA2 Propellant, 2013.7.2.6 Novozhilov Stability Parameters, 2023.7.2.7 Novozhilov Stability Parameters for JA2 Propellant, 2033.7.2.8 Some Problems Associated with Dynamic Burning Characterization, 2053.7.2.9 Factors Influencing Dynamic Burning, 207Chapter Problems, 2084 Chemically Reacting Boundary-Layer Flows 2094.1 Introduction, 2104.1.1 Applications of Reacting Boundary-Layer Flows, 2114.1.2 High-Temperature Experimental Facilities Used in Investigation, 2114.1.3 Theoretical Approaches and Boundary-Layer Flow Classifications, 2124.1.4 Historical Survey, 2124.2 Governing Equations for Two-Dimensional Reacting Boundary-Layer Flows, 2164.3 Boundary Conditions, 2214.4 Chemical Kinetics, 2244.4.1 Homogeneous Chemical Reactions, 2244.4.2 Heterogeneous Chemical Reactions, 2264.5 Laminar Boundary-Layer Flows with Surface Reactions, 2294.5.1 Governing Equations and Boundary Conditions, 2294.5.2 Transformation to (& xi , & eta ) Coordinates, 2294.5.3 Conditions for Decoupling of Governing Equations and Self-Similar Solutions, 2324.5.4 Damk& uml ohler Number for Surface Reactions, 2334.5.5 Surface Combustion of Graphite Near the Stagnation Region, 2344.6 Laminar Boundary-Layer Flows With Gas-Phase Reactions, 2394.6.1 Governing Equations and Coordinate Transformation, 2394.6.2 Damk& uml ohler Number for Gas-Phase Reactions, 2404.6.3 Extension to Axisymmetric Cases, 2424.7 Turbulent Boundary-Layer Flows with Chemical Reactions, 2434.7.1 Introduction, 2434.7.2 Boundary-Layer Integral Matrix Procedure of Evans, 2434.7.2.1 General Conservation Equations, 2434.7.2.2 Molecular Transport Properties, 2474.7.2.3 Turbulent Transport Properties, 2514.7.2.4 Equation of State, 2564.7.2.5 Integral Matrix Solution Procedure, 2564.7.2.6 Limitations of the BLIMP Analysis, 2574.7.3 Marching-Integration Procedure of Patankar and Spalding, 2574.7.3.1 Description of the Physical Model, 2584.7.3.2 Conservation Equations for the Viscous Region, 2584.7.3.3 Modeling of the Gas-Phase Chemical Reactions, 2594.7.3.4 Governing Equations for the Inviscid Region, 2604.7.3.5 Boundary Conditions, 2614.7.3.6 Near-Wall Treatment of & tilde k and & tilde & epsilon , 2624.7.3.7 Coordinate Transformation and Solution Procedur Ignition of Boron Particles, 3445.5 Experimental Studies, 3515.5.1 Gasification of Boron Oxides, 3525.5.2 Chemical Kinetics Measurement, 3535.5.3 Boron Ignition Combustion in a Controlled Hot Gas Environment, 3545.6 Theoretical Studies of Boron Ignition and Combustion, 3625.6.1 First-Stage Combustion Models, 3625.6.2 Second-Stage Combustion Models, 3655.6.3 Chemical Kinetic Mechanisms, 3655.6.4 Methods for Enhancement of Boron Ignition, 3675.6.5 Verification of Diffusion Mechanism of Boron Particle Combustion, 3695.6.6 Chemical Identification of the Boron Oxide Layer, 3715.7 Theoretical Model Development of Boron Particle Combustion, 3725.7.1 First-Stage Combustion Model, 3725.7.2 Second-Stage Combustion Model, 3775.7.3 Comparison of Predicted and Measured Combustion Times, 3815.8 Ignition and Combustion of Boron Particles in Fluorine-Containing Environments, 3845.8.1 Multidiffusion Flat-Flame Burner, 3855.8.2 Test Conditions, 3875.8.3 Experimental Results and Discussions, 3885.8.4 Surface Reaction of (BO)n with HF(g), 3935.8.5 Surface Reaction of (BO)n with F(g), 3945.8.6 Governing Equations During the First-Stage Combustion of Boron Particles, 3955.8.7 Model for the & ldquo Clean& rdquo Boron Consumption Process (Second-Stage Combustion), 3965.8. Applications of Turbulent and Multi-Phase Combustion: InhaltsangabePreface xvii1 Solid Propellants and Their Combustion Characteristics 11.1 Background of Solid Propellant Combustion, 41.1.1 Definition of Solid Propellants, 41.1.2 Desirable Characteristics of Solid Propellants, 41.1.3 Calculation of Oxygen Balance, 51.1.4 Homogeneous Propellants, 61.1.4.1 Decomposition Characteristics of NC, 61.1.5 Heterogeneous Propellants (or Composite Propellants), 71.1.6 Major Types of Ingredients in Solid Propellants, 81.1.6.1 Description of Oxidizer Ingredients, 101.1.6.2 Description of Fuel Binders, 121.1.6.3 Curing and Cross-Linking Agents, 141.1.6.4 Aging, 151.1.7 Applications of Solid Propellants, 161.1.7.1 Hazard Classifications of Solid Propellants, 161.1.8 Material Characterization of Propellants, 161.1.8.1 Propellant Density Calculation, 161.1.8.2 Propellant Mass Fraction, , 171.1.8.3 Viscoelastic Behavior of Solid Propellants, 171.1.9 Thermal Profile in a Burning Solid Propellant, 181.1.9.1 Surface and Subsurface Temperature Measurements of Solid Propellants, 181.1.9.2 Interfacial Energy Flux Balance at the Solid Propellant Surface, 201.1.9.3 Energy Equation for the Gas Phase, 211.1.9.4 Burning Rate of Solid Propellants, 231.1.9.5 Temperature Sensitivity of Burning Rate, 251.1.9.6 Measurement of Propellant Burning Rate by Using a Strand Burner, 261.1.9.7 Measurement of Propellant Burning Rate by Using a Small-Scale Motor, 371.1.9.8 Burning Rate Temperature Sensitivity of Neat Ingredients, 411.2 Solid-Propellant Rocket and Gun Performance Parameters, 431.2.1 Performance Parameters of a Solid Rocket Motor, 441.2.1.1 Thrust of a Solid Rocket Motor, 441.2.1.2 Specific Impulse of a Solid Rocket Motor, 481.2.1.3 Density-Specific Impulse, 561.2.1.4 Effective Vacuum Exhaust Velocity, 581.2.1.5 Characteristic Velocity C & lowast , 581.2.1.6 Pressure Sensitivity of Burning Rate, 591.2.1.7 Thrust Coefficient Efficiency, 601.2.1.8 Effect of Pressure Exponent on Stable/Unstable Burning in Solid Rocket Motor, 601.2.2 Performance Parameters of Solid-Propellant Gun Systems, 611.2.2.1 Energy Balance Equation, 641.2.2.2 Efficiencies of Gun Propulsion Systems, 671.2.2.3 Heat of Explosion (Ho ex), 691.2.2.4 Relative Quickness, Relative Force, and Deviations in Muzzle Velocity, 701.2.2.5 Dynamic Vivacity, 712 Thermal Decomposition and Combustion of Nitramines 722.1 Thermophysical Properties of Selected Nitramines, 762.2 Polymorphic Forms of Nitramines, 782.2.1 Polymorphic Forms of HMX, 802.2.2 Polymorphic Forms of RDX, 822.3 Thermal Decomposition of RDX, 882.3.1 Explanation of Opposite Trends on & alpha - and & beta -RDX Decomposition with Increasing Pressure, 902.3.2 Thermal Decomposition Mechanisms of RDX, 922.3.2.1 Homolytic N& ndash N Bond Cleavage, 922.3.2.2 Concerted Ring Opening Mechanism of RDX, 942.3.2.3 Successive HONO Elimination Mechanism of RDX, 962.3.2.4 Analysis of Three Decomposition Mechanisms, 1042.3.3 Formation of Foam Layer Near RDX Burning Sur Homogeneous Propellants, 1583.5.1 Dark Zone Residence Time Correlation, 1663.6 Modeling and Prediction of Homogeneous Propellant Combustion Behavior, 1673.6.1 Multi-Ingredient Model of Miller and Anderson, 1713.6.1.1 NC: A Special Case Ingredient, 1723.6.1.2 Comparison of Calculated Propellant Burning Rates with the Experimental Data, 1753.7 Transient Burning Characterization of Homogeneous Solid Propellant, 1873.7.1 What is Dynamic Burning , 1883.7.2 Theoretical Models for Dynamic Burning, 1903.7.2.1 dp/dt Approach, 1933.7.2.2 Flame Description Approach, 1943.7.2.3 Zel& rsquo dovich Approach, 1943.7.2.4 Characterization of Dynamic Burning of JA2 Propellant Using the Zel& rsquo dovich Approach, 1963.7.2.5 Experimental Measurement of Dynamic Burning Rate of JA2 Propellant, 2013.7.2.6 Novozhilov Stability Parameters, 2023.7.2.7 Novozhilov Stability Parameters for JA2 Propellant, 2033.7.2.8 Some Problems Associated with Dynamic Burning Characterization, 2053.7.2.9 Factors Influencing Dynamic Burning, 207Chapter Problems, 2084 Chemically Reacting Boundary-Layer Flows 2094.1 Introduction, 2104.1.1 Applications of Reacting Boundary-Layer Flows, 2114.1.2 High-Temperature Experimental Facilities Used in Investigation, 2114.1.3 Theoretical Approaches and Boundary-Layer Flow Classifications, 2124.1.4 Historical Survey, 2124.2 Governing Equations for Two-Dimensional Reacting Boundary-Layer Flows, 2164.3 Boundary Conditions, 2214.4 Chemical Kinetics, 2244.4.1 Homogeneous Chemical Reactions, 2244.4.2 Heterogeneous Chemical Reactions, 2264.5 Laminar Boundary-Layer Flows with Surface Reactions, 2294.5.1 Governing Equations and Boundary Conditions, 2294.5.2 Transformation to (& xi , & eta ) Coordinates, 2294.5.3 Conditions for Decoupling of Governing Equations and Self-Similar Solutions, 2324.5.4 Damk& uml ohler Number for Surface Reactions, 2334.5.5 Surface Combustion of Graphite Near the Stagnation Region, 2344.6 Laminar Boundary-Layer Flows With Gas-Phase Reactions, 2394.6.1 Governing Equations and Coordinate Transformation, 2394.6.2 Damk& uml ohler Number for Gas-Phase Reactions, 2404.6.3 Extension to Axisymmetric Cases, 2424.7 Turbulent Boundary-Layer Flows with Chemical Reactions, 2434.7.1 Introduction, 2434.7.2 Boundary-Layer Integral Matrix Procedure of Evans, 2434.7.2.1 General Conservation Equations, 2434.7.2.2 Molecular Transport Properties, 2474.7.2.3 Turbulent Transport Properties, 2514.7.2.4 Equation of State, 2564.7.2.5 Integral Matrix Solution Procedure, 2564.7.2.6 Limitations of the BLIMP Analysis, 2574.7.3 Marching-Integration Procedure of Patankar and Spalding, 2574.7.3.1 Description of the Physical Model, 2584.7.3.2 Conservation Equations for the Viscous Region, 2584.7.3.3 Modeling of the Gas-Phase Chemical Reactions, 2594.7.3.4 Governing Equations for the Inviscid Region, 2604.7.3.5 Boundary Conditions, 2614.7.3.6 Near-Wall Treatment of & tilde k and & tilde & epsilon , 2624.7.3.7 Coordinate Transformation and Solution Procedur Ignition of Boron Particles, 3445.5 Experimental Studies, 3515.5.1 Gasification of Boron Oxides, 3525.5.2 Chemical Kinetics Measurement, 3535.5.3 Boron Ignition Combustion in a Controlled Hot Gas Environment, 3545.6 Theoretical Studies of Boron Ignition and Combustion, 3625.6.1 First-Stage Combustion Models, 3625.6.2 Second-Stage Combustion Models, 3655.6.3 Chemical Kinetic Mechanisms, 3655.6.4 Methods for Enhancement of Boron Ignition, 3675.6.5 Verification of Diffusion Mechanism of Boron Particle Combustion, 3695.6.6 Chemical Identification of the Boron Oxide Layer, 3715.7 Theoretical Model Development of Boron Particle Combustion, 3725.7.1 First-Stage Combustion Model, 3725.7.2 Second-Stage Combustion Model, 3775.7.3 Comparison of Predicted and Measured Combustion Times, 3815.8 Ignition and Combustion of Boron Particles in Fluorine-Containing Environments, 3845.8.1 Multidiffusion Flat-Flame Burner, 3855.8.2 Test Conditions, 3875.8.3 Experimental Results and Discussions, 3885.8.4 Surface Reaction of (BO)n with HF(g), 3935.8.5 Surface Reaction of (BO)n with F(g), 3945.8.6 Governing Equations During the First-Stage Combustion of Boron Particles, 3955.8.7 Model for the & ldquo Clean& rdquo, John Wiley & Sons

Nouveaux livres Rheinberg-Buch.de
Frais d'envoiAb 20¤ Versandkostenfrei in Deutschland, Sofort lieferbar, DE. (EUR 0.00)
Details...
(*) Livre non disponible signifie que le livre est actuellement pas disponible à l'une des plates-formes associées nous recherche.
Applications of Turbulent and Multi-Phase Combustion - Kenneth Kuan-yun Kuo
Livre non disponible
(*)

Kenneth Kuan-yun Kuo:

Applications of Turbulent and Multi-Phase Combustion - nouveau livre

2013, ISBN: 9781118130681

ID: 9781118130681

InhaltsangabePreface xvii1 Solid Propellants and Their Combustion Characteristics 11.1 Background of Solid Propellant Combustion, 41.1.1 Definition of Solid Propellants, 41.1.2 Desirable Characteristics of Solid Propellants, 41.1.3 Calculation of Oxygen Balance, 51.1.4 Homogeneous Propellants, 61.1.4.1 Decomposition Characteristics of NC, 61.1.5 Heterogeneous Propellants (or Composite Propellants), 71.1.6 Major Types of Ingredients in Solid Propellants, 81.1.6.1 Description of Oxidizer Ingredients, 101.1.6.2 Description of Fuel Binders, 121.1.6.3 Curing and Cross-Linking Agents, 141.1.6.4 Aging, 151.1.7 Applications of Solid Propellants, 161.1.7.1 Hazard Classifications of Solid Propellants, 161.1.8 Material Characterization of Propellants, 161.1.8.1 Propellant Density Calculation, 161.1.8.2 Propellant Mass Fraction, , 171.1.8.3 Viscoelastic Behavior of Solid Propellants, 171.1.9 Thermal Profile in a Burning Solid Propellant, 181.1.9.1 Surface and Subsurface Temperature Measurements of Solid Propellants, 181.1.9.2 Interfacial Energy Flux Balance at the Solid Propellant Surface, 201.1.9.3 Energy Equation for the Gas Phase, 211.1.9.4 Burning Rate of Solid Propellants, 231.1.9.5 Temperature Sensitivity of Burning Rate, 251.1.9.6 Measurement of Propellant Burning Rate by Using a Strand Burner, 261.1.9.7 Measurement of Propellant Burning Rate by Using a Small-Scale Motor, 371.1.9.8 Burning Rate Temperature Sensitivity of Neat Ingredients, 411.2 Solid-Propellant Rocket and Gun Performance Parameters, 431.2.1 Performance Parameters of a Solid Rocket Motor, 441.2.1.1 Thrust of a Solid Rocket Motor, 441.2.1.2 Specific Impulse of a Solid Rocket Motor, 481.2.1.3 Density-Specific Impulse, 561.2.1.4 Effective Vacuum Exhaust Velocity, 581.2.1.5 Characteristic Velocity C &lowast , 581.2.1.6 Pressure Sensitivity of Burning Rate, 591.2.1.7 Thrust Coefficient Efficiency, 601.2.1.8 Effect of Pressure Exponent on Stable/Unstable Burning in Solid Rocket Motor, 601.2.2 Performance Parameters of Solid-Propellant Gun Systems, 611.2.2.1 Energy Balance Equation, 641.2.2.2 Efficiencies of Gun Propulsion Systems, 671.2.2.3 Heat of Explosion (Ho ex), 691.2.2.4 Relative Quickness, Relative Force, and Deviations in Muzzle Velocity, 701.2.2.5 Dynamic Vivacity, 712 Thermal Decomposition and Combustion of Nitramines 722.1 Thermophysical Properties of Selected Nitramines, 762.2 Polymorphic Forms of Nitramines, 782.2.1 Polymorphic Forms of HMX, 802.2.2 Polymorphic Forms of RDX, 822.3 Thermal Decomposition of RDX, 882.3.1 Explanation of Opposite Trends on &alpha - and &beta -RDX Decomposition with Increasing Pressure, 902.3.2 Thermal Decomposition Mechanisms of RDX, 922.3.2.1 Homolytic N&ndash N Bond Cleavage, 922.3.2.2 Concerted Ring Opening Mechanism of RDX, 942.3.2.3 Successive HONO Elimination Mechanism of RDX, 962.3.2.4 Analysis of Three Decomposition Mechanisms, 1042.3.3 Formation of Foam Layer Near RDX Burning Sur Homogeneous Propellants, 1583.5.1 Dark Zone Residence Time Correlation, 1663.6 Modeling and Prediction of Homogeneous Propellant Combustion Behavior, 1673.6.1 Multi-Ingredient Model of Miller and Anderson, 1713.6.1.1 NC: A Special Case Ingredient, 1723.6.1.2 Comparison of Calculated Propellant Burning Rates with the Experimental Data, 1753.7 Transient Burning Characterization of Homogeneous Solid Propellant, 1873.7.1 What is Dynamic Burning , 1883.7.2 Theoretical Models for Dynamic Burning, 1903.7.2.1 dp/dt Approach, 1933.7.2.2 Flame Description Approach, 1943.7.2.3 Zel&rsquo dovich Approach, 1943.7.2.4 Characterization of Dynamic Burning of JA2 Propellant Using the Zel&rsquo dovich Approach, 1963.7.2.5 Experimental Measurement of Dynamic Burning Rate of JA2 Propellant, 2013.7.2.6 Novozhilov Stability Parameters, 2023.7.2.7 Novozhilov Stability Parameters for JA2 Propellant, 2033.7.2.8 Some Problems Associated with Dynamic Burning Characterization, 2053.7.2.9 Factors Influencing Dynamic Burning, 207Chapter Problems, 2084 Chemically Reacting Boundary-Layer Flows 2094.1 Introduction, 2104.1.1 Applications of Reacting Boundary-Layer Flows, 2114.1.2 High-Temperature Experimental Facilities Used in Investigation, 2114.1.3 Theoretical Approaches and Boundary-Layer Flow Classifications, 2124.1.4 Historical Survey, 2124.2 Governing Equations for Two-Dimensional Reacting Boundary-Layer Flows, 2164.3 Boundary Conditions, 2214.4 Chemical Kinetics, 2244.4.1 Homogeneous Chemical Reactions, 2244.4.2 Heterogeneous Chemical Reactions, 2264.5 Laminar Boundary-Layer Flows with Surface Reactions, 2294.5.1 Governing Equations and Boundary Conditions, 2294.5.2 Transformation to (&xi , &eta ) Coordinates, 2294.5.3 Conditions for Decoupling of Governing Equations and Self-Similar Solutions, 2324.5.4 Damk¨ ohler Number for Surface Reactions, 2334.5.5 Surface Combustion of Graphite Near the Stagnation Region, 2344.6 Laminar Boundary-Layer Flows With Gas-Phase Reactions, 2394.6.1 Governing Equations and Coordinate Transformation, 2394.6.2 Damk¨ ohler Number for Gas-Phase Reactions, 2404.6.3 Extension to Axisymmetric Cases, 2424.7 Turbulent Boundary-Layer Flows with Chemical Reactions, 2434.7.1 Introduction, 2434.7.2 Boundary-Layer Integral Matrix Procedure of Evans, 2434.7.2.1 General Conservation Equations, 2434.7.2.2 Molecular Transport Properties, 2474.7.2.3 Turbulent Transport Properties, 2514.7.2.4 Equation of State, 2564.7.2.5 Integral Matrix Solution Procedure, 2564.7.2.6 Limitations of the BLIMP Analysis, 2574.7.3 Marching-Integration Procedure of Patankar and Spalding, 2574.7.3.1 Description of the Physical Model, 2584.7.3.2 Conservation Equations for the Viscous Region, 2584.7.3.3 Modeling of the Gas-Phase Chemical Reactions, 2594.7.3.4 Governing Equations for the Inviscid Region, 2604.7.3.5 Boundary Conditions, 2614.7.3.6 Near-Wall Treatment of &tilde k and &tilde &epsilon , 2624.7.3.7 Coordinate Transformation and Solution Procedur Ignition of Boron Particles, 3445.5 Experimental Studies, 3515.5.1 Gasification of Boron Oxides, 3525.5.2 Chemical Kinetics Measurement, 3535.5.3 Boron Ignition Combustion in a Controlled Hot Gas Environment, 3545.6 Theoretical Studies of Boron Ignition and Combustion, 3625.6.1 First-Stage Combustion Models, 3625.6.2 Second-Stage Combustion Models, 3655.6.3 Chemical Kinetic Mechanisms, 3655.6.4 Methods for Enhancement of Boron Ignition, 3675.6.5 Verification of Diffusion Mechanism of Boron Particle Combustion, 3695.6.6 Chemical Identification of the Boron Oxide Layer, 3715.7 Theoretical Model Development of Boron Particle Combustion, 3725.7.1 First-Stage Combustion Model, 3725.7.2 Second-Stage Combustion Model, 3775.7.3 Comparison of Predicted and Measured Combustion Times, 3815.8 Ignition and Combustion of Boron Particles in Fluorine-Containing Environments, 3845.8.1 Multidiffusion Flat-Flame Burner, 3855.8.2 Test Conditions, 3875.8.3 Experimental Results and Discussions, 3885.8.4 Surface Reaction of (BO)n with HF(g), 3935.8.5 Surface Reaction of (BO)n with F(g), 3945.8.6 Governing Equations During the First-Stage Combustion of Boron Particles, 3955.8.7 Model for the &ldquo Clean&rdquo Boron Consumption Process (Second-Stage Combustion), 3965.8. Applications of Turbulent and Multi-Phase Combustion: InhaltsangabePreface xvii1 Solid Propellants and Their Combustion Characteristics 11.1 Background of Solid Propellant Combustion, 41.1.1 Definition of Solid Propellants, 41.1.2 Desirable Characteristics of Solid Propellants, 41.1.3 Calculation of Oxygen Balance, 51.1.4 Homogeneous Propellants, 61.1.4.1 Decomposition Characteristics of NC, 61.1.5 Heterogeneous Propellants (or Composite Propellants), 71.1.6 Major Types of Ingredients in Solid Propellants, 81.1.6.1 Description of Oxidizer Ingredients, 101.1.6.2 Description of Fuel Binders, 121.1.6.3 Curing and Cross-Linking Agents, 141.1.6.4 Aging, 151.1.7 Applications of Solid Propellants, 161.1.7.1 Hazard Classifications of Solid Propellants, 161.1.8 Material Characterization of Propellants, 161.1.8.1 Propellant Density Calculation, 161.1.8.2 Propellant Mass Fraction, , 171.1.8.3 Viscoelastic Behavior of Solid Propellants, 171.1.9 Thermal Profile in a Burning Solid Propellant, 181.1.9.1 Surface and Subsurface Temperature Measurements of Solid Propellants, 181.1.9.2 Interfacial Energy Flux Balance at the Solid Propellant Surface, 201.1.9.3 Energy Equation for the Gas Phase, 211.1.9.4 Burning Rate of Solid Propellants, 231.1.9.5 Temperature Sensitivity of Burning Rate, 251.1.9.6 Measurement of Propellant Burning Rate by Using a Strand Burner, 261.1.9.7 Measurement of Propellant Burning Rate by Using a Small-Scale Motor, 371.1.9.8 Burning Rate Temperature Sensitivity of Neat Ingredients, 411.2 Solid-Propellant Rocket and Gun Performance Parameters, 431.2.1 Performance Parameters of a Solid Rocket Motor, 441.2.1.1 Thrust of a Solid Rocket Motor, 441.2.1.2 Specific Impulse of a Solid Rocket Motor, 481.2.1.3 Density-Specific Impulse, 561.2.1.4 Effective Vacuum Exhaust Velocity, 581.2.1.5 Characteristic Velocity C &lowast , 581.2.1.6 Pressure Sensitivity of Burning Rate, 591.2.1.7 Thrust Coefficient Efficiency, 601.2.1.8 Effect of Pressure Exponent on Stable/Unstable Burning in Solid Rocket Motor, 601.2.2 Performance Parameters of Solid-Propellant Gun Systems, 611.2.2.1 Energy Balance Equation, 641.2.2.2 Efficiencies of Gun Propulsion Systems, 671.2.2.3 Heat of Explosion (Ho ex), 691.2.2.4 Relative Quickness, Relative Force, and Deviations in Muzzle Velocity, 701.2.2.5 Dynamic Vivacity, 712 Thermal Decomposition and Combustion of Nitramines 722.1 Thermophysical Properties of Selected Nitramines, 762.2 Polymorphic Forms of Nitramines, 782.2.1 Polymorphic Forms of HMX, 802.2.2 Polymorphic Forms of RDX, 822.3 Thermal Decomposition of RDX, 882.3.1 Explanation of Opposite Trends on &alpha - and &beta -RDX Decomposition with Increasing Pressure, 902.3.2 Thermal Decomposition Mechanisms of RDX, 922.3.2.1 Homolytic N&ndash N Bond Cleavage, 922.3.2.2 Concerted Ring Opening Mechanism of RDX, 942.3.2.3 Successive HONO Elimination Mechanism of RDX, 962.3.2.4 Analysis of Three Decomposition Mechanisms, 1042.3.3 Formation of Foam Layer Near RDX Burning Sur Homogeneous Propellants, 1583.5.1 Dark Zone Residence Time Correlation, 1663.6 Modeling and Prediction of Homogeneous Propellant Combustion Behavior, 1673.6.1 Multi-Ingredient Model of Miller and Anderson, 1713.6.1.1 NC: A Special Case Ingredient, 1723.6.1.2 Comparison of Calculated Propellant Burning Rates with the Experimental Data, 1753.7 Transient Burning Characterization of Homogeneous Solid Propellant, 1873.7.1 What is Dynamic Burning , 1883.7.2 Theoretical Models for Dynamic Burning, 1903.7.2.1 dp/dt Approach, 1933.7.2.2 Flame Description Approach, 1943.7.2.3 Zel&rsquo dovich Approach, 1943.7.2.4 Characterization of Dynamic Burning of JA2 Propellant Using the Zel&rsquo dovich Approach, 1963.7.2.5 Experimental Measurement of Dynamic Burning Rate of JA2 Propellant, 2013.7.2.6 Novozhilov Stability Parameters, 2023.7.2.7 Novozhilov Stability Parameters for JA2 Propellant, 2033.7.2.8 Some Problems Associated with Dynamic Burning Characterization, 2053.7.2.9 Factors Influencing Dynamic Burning, 207Chapter Problems, 2084 Chemically Reacting Boundary-Layer Flows 2094.1 Introduction, 2104.1.1 Applications of Reacting Boundary-Layer Flows, 2114.1.2 High-Temperature Experimental Facilities Used in Investigation, 2114.1.3 Theoretical Approaches and Boundary-Layer Flow Classifications, 2124.1.4 Historical Survey, 2124.2 Governing Equations for Two-Dimensional Reacting Boundary-Layer Flows, 2164.3 Boundary Conditions, 2214.4 Chemical Kinetics, 2244.4.1 Homogeneous Chemical Reactions, 2244.4.2 Heterogeneous Chemical Reactions, 2264.5 Laminar Boundary-Layer Flows with Surface Reactions, 2294.5.1 Governing Equations and Boundary Conditions, 2294.5.2 Transformation to (&xi , &eta ) Coordinates, 2294.5.3 Conditions for Decoupling of Governing Equations and Self-Similar Solutions, 2324.5.4 Damk¨ ohler Number for Surface Reactions, 2334.5.5 Surface Combustion of Graphite Near the Stagnation Region, 2344.6 Laminar Boundary-Layer Flows With Gas-Phase Reactions, 2394.6.1 Governing Equations and Coordinate Transformation, 2394.6.2 Damk¨ ohler Number for Gas-Phase Reactions, 2404.6.3 Extension to Axisymmetric Cases, 2424.7 Turbulent Boundary-Layer Flows with Chemical Reactions, 2434.7.1 Introduction, 2434.7.2 Boundary-Layer Integral Matrix Procedure of Evans, 2434.7.2.1 General Conservation Equations, 2434.7.2.2 Molecular Transport Properties, 2474.7.2.3 Turbulent Transport Properties, 2514.7.2.4 Equation of State, 2564.7.2.5 Integral Matrix Solution Procedure, 2564.7.2.6 Limitations of the BLIMP Analysis, 2574.7.3 Marching-Integration Procedure of Patankar and Spalding, 2574.7.3.1 Description of the Physical Model, 2584.7.3.2 Conservation Equations for the Viscous Region, 2584.7.3.3 Modeling of the Gas-Phase Chemical Reactions, 2594.7.3.4 Governing Equations for the Inviscid Region, 2604.7.3.5 Boundary Conditions, 2614.7.3.6 Near-Wall Treatment of &tilde k and &tilde &epsilon , 2624.7.3.7 Coordinate Transformation and Solution Procedur Ignition of Boron Particles, 3445.5 Experimental Studies, 3515.5.1 Gasification of Boron Oxides, 3525.5.2 Chemical Kinetics Measurement, 3535.5.3 Boron Ignition Combustion in a Controlled Hot Gas Environment, 3545.6 Theoretical Studies of Boron Ignition and Combustion, 3625.6.1 First-Stage Combustion Models, 3625.6.2 Second-Stage Combustion Models, 3655.6.3 Chemical Kinetic Mechanisms, 3655.6.4 Methods for Enhancement of Boron Ignition, 3675.6.5 Verification of Diffusion Mechanism of Boron Particle Combustion, 3695.6.6 Chemical Identification of the Boron Oxide Layer, 3715.7 Theoretical Model Development of Boron Particle Combustion, 3725.7.1 First-Stage Combustion Model, 3725.7.2 Second-Stage Combustion Model, 3775.7.3 Comparison of Predicted and Measured Combustion Times, 3815.8 Ignition and Combustion of Boron Particles in Fluorine-Containing Environments, 3845.8.1 Multidiffusion Flat-Flame Burner, 3855.8.2 Test Conditions, 3875.8.3 Experimental Results and Discussions, 3885.8.4 Surface Reaction of (BO)n with HF(g), 3935.8.5 Surface Reaction of (BO)n with F(g), 3945.8.6 Governing Equations During the First-Stage Combustion of Boron Particles, 3955.8.7 Model for the &ldquo Clean&rdquo Boron Consumption Process (Second-Stage Combustion), 3965.8. Aeronautic & Aerospace Engineering Chemical Engineering, John Wiley & Sons

Nouveaux livres Rheinberg-Buch.de
Frais d'envoiAb 20¤ Versandkostenfrei in Deutschland, Sofort lieferbar, DE. (EUR 0.00)
Details...
(*) Livre non disponible signifie que le livre est actuellement pas disponible à l'une des plates-formes associées nous recherche.
Applications of Turbulent and Multi-Phase Combustion - Kenneth Kuan-yun Kuo
Livre non disponible
(*)
Kenneth Kuan-yun Kuo:
Applications of Turbulent and Multi-Phase Combustion - nouveau livre

2013

ISBN: 9781118130681

ID: 9781118130681

InhaltsangabePreface xvii1 Solid Propellants and Their Combustion Characteristics 11.1 Background of Solid Propellant Combustion, 41.1.1 Definition of Solid Propellants, 41.1.2 Desirable Characteristics of Solid Propellants, 41.1.3 Calculation of Oxygen Balance, 51.1.4 Homogeneous Propellants, 61.1.4.1 Decomposition Characteristics of NC, 61.1.5 Heterogeneous Propellants (or Composite Propellants), 71.1.6 Major Types of Ingredients in Solid Propellants, 81.1.6.1 Description of Oxidizer Ingredients, 101.1.6.2 Description of Fuel Binders, 121.1.6.3 Curing and Cross-Linking Agents, 141.1.6.4 Aging, 151.1.7 Applications of Solid Propellants, 161.1.7.1 Hazard Classifications of Solid Propellants, 161.1.8 Material Characterization of Propellants, 161.1.8.1 Propellant Density Calculation, 161.1.8.2 Propellant Mass Fraction, , 171.1.8.3 Viscoelastic Behavior of Solid Propellants, 171.1.9 Thermal Profile in a Burning Solid Propellant, 181.1.9.1 Surface and Subsurface Temperature Measurements of Solid Propellants, 181.1.9.2 Interfacial Energy Flux Balance at the Solid Propellant Surface, 201.1.9.3 Energy Equation for the Gas Phase, 211.1.9.4 Burning Rate of Solid Propellants, 231.1.9.5 Temperature Sensitivity of Burning Rate, 251.1.9.6 Measurement of Propellant Burning Rate by Using a Strand Burner, 261.1.9.7 Measurement of Propellant Burning Rate by Using a Small-Scale Motor, 371.1.9.8 Burning Rate Temperature Sensitivity of Neat Ingredients, 411.2 Solid-Propellant Rocket and Gun Performance Parameters, 431.2.1 Performance Parameters of a Solid Rocket Motor, 441.2.1.1 Thrust of a Solid Rocket Motor, 441.2.1.2 Specific Impulse of a Solid Rocket Motor, 481.2.1.3 Density-Specific Impulse, 561.2.1.4 Effective Vacuum Exhaust Velocity, 581.2.1.5 Characteristic Velocity C &lowast , 581.2.1.6 Pressure Sensitivity of Burning Rate, 591.2.1.7 Thrust Coefficient Efficiency, 601.2.1.8 Effect of Pressure Exponent on Stable/Unstable Burning in Solid Rocket Motor, 601.2.2 Performance Parameters of Solid-Propellant Gun Systems, 611.2.2.1 Energy Balance Equation, 641.2.2.2 Efficiencies of Gun Propulsion Systems, 671.2.2.3 Heat of Explosion (Ho ex), 691.2.2.4 Relative Quickness, Relative Force, and Deviations in Muzzle Velocity, 701.2.2.5 Dynamic Vivacity, 712 Thermal Decomposition and Combustion of Nitramines 722.1 Thermophysical Properties of Selected Nitramines, 762.2 Polymorphic Forms of Nitramines, 782.2.1 Polymorphic Forms of HMX, 802.2.2 Polymorphic Forms of RDX, 822.3 Thermal Decomposition of RDX, 882.3.1 Explanation of Opposite Trends on &alpha - and &beta -RDX Decomposition with Increasing Pressure, 902.3.2 Thermal Decomposition Mechanisms of RDX, 922.3.2.1 Homolytic N&ndash N Bond Cleavage, 922.3.2.2 Concerted Ring Opening Mechanism of RDX, 942.3.2.3 Successive HONO Elimination Mechanism of RDX, 962.3.2.4 Analysis of Three Decomposition Mechanisms, 1042.3.3 Formation of Foam Layer Near RDX Burning Sur Homogeneous Propellants, 1583.5.1 Dark Zone Residence Time Correlation, 1663.6 Modeling and Prediction of Homogeneous Propellant Combustion Behavior, 1673.6.1 Multi-Ingredient Model of Miller and Anderson, 1713.6.1.1 NC: A Special Case Ingredient, 1723.6.1.2 Comparison of Calculated Propellant Burning Rates with the Experimental Data, 1753.7 Transient Burning Characterization of Homogeneous Solid Propellant, 1873.7.1 What is Dynamic Burning , 1883.7.2 Theoretical Models for Dynamic Burning, 1903.7.2.1 dp/dt Approach, 1933.7.2.2 Flame Description Approach, 1943.7.2.3 Zel&rsquo dovich Approach, 1943.7.2.4 Characterization of Dynamic Burning of JA2 Propellant Using the Zel&rsquo dovich Approach, 1963.7.2.5 Experimental Measurement of Dynamic Burning Rate of JA2 Propellant, 2013.7.2.6 Novozhilov Stability Parameters, 2023.7.2.7 Novozhilov Stability Parameters for JA2 Propellant, 2033.7.2.8 Some Problems Associated with Dynamic Burning Characterization, 2053.7.2.9 Factors Influencing Dynamic Burning, 207Chapter Problems, 2084 Chemically Reacting Boundary-Layer Flows 2094.1 Introduction, 2104.1.1 Applications of Reacting Boundary-Layer Flows, 2114.1.2 High-Temperature Experimental Facilities Used in Investigation, 2114.1.3 Theoretical Approaches and Boundary-Layer Flow Classifications, 2124.1.4 Historical Survey, 2124.2 Governing Equations for Two-Dimensional Reacting Boundary-Layer Flows, 2164.3 Boundary Conditions, 2214.4 Chemical Kinetics, 2244.4.1 Homogeneous Chemical Reactions, 2244.4.2 Heterogeneous Chemical Reactions, 2264.5 Laminar Boundary-Layer Flows with Surface Reactions, 2294.5.1 Governing Equations and Boundary Conditions, 2294.5.2 Transformation to (&xi , &eta ) Coordinates, 2294.5.3 Conditions for Decoupling of Governing Equations and Self-Similar Solutions, 2324.5.4 Damk¨ ohler Number for Surface Reactions, 2334.5.5 Surface Combustion of Graphite Near the Stagnation Region, 2344.6 Laminar Boundary-Layer Flows With Gas-Phase Reactions, 2394.6.1 Governing Equations and Coordinate Transformation, 2394.6.2 Damk¨ ohler Number for Gas-Phase Reactions, 2404.6.3 Extension to Axisymmetric Cases, 2424.7 Turbulent Boundary-Layer Flows with Chemical Reactions, 2434.7.1 Introduction, 2434.7.2 Boundary-Layer Integral Matrix Procedure of Evans, 2434.7.2.1 General Conservation Equations, 2434.7.2.2 Molecular Transport Properties, 2474.7.2.3 Turbulent Transport Properties, 2514.7.2.4 Equation of State, 2564.7.2.5 Integral Matrix Solution Procedure, 2564.7.2.6 Limitations of the BLIMP Analysis, 2574.7.3 Marching-Integration Procedure of Patankar and Spalding, 2574.7.3.1 Description of the Physical Model, 2584.7.3.2 Conservation Equations for the Viscous Region, 2584.7.3.3 Modeling of the Gas-Phase Chemical Reactions, 2594.7.3.4 Governing Equations for the Inviscid Region, 2604.7.3.5 Boundary Conditions, 2614.7.3.6 Near-Wall Treatment of &tilde k and &tilde &epsilon , 2624.7.3.7 Coordinate Transformation and Solution Procedur Ignition of Boron Particles, 3445.5 Experimental Studies, 3515.5.1 Gasification of Boron Oxides, 3525.5.2 Chemical Kinetics Measurement, 3535.5.3 Boron Ignition Combustion in a Controlled Hot Gas Environment, 3545.6 Theoretical Studies of Boron Ignition and Combustion, 3625.6.1 First-Stage Combustion Models, 3625.6.2 Second-Stage Combustion Models, 3655.6.3 Chemical Kinetic Mechanisms, 3655.6.4 Methods for Enhancement of Boron Ignition, 3675.6.5 Verification of Diffusion Mechanism of Boron Particle Combustion, 3695.6.6 Chemical Identification of the Boron Oxide Layer, 3715.7 Theoretical Model Development of Boron Particle Combustion, 3725.7.1 First-Stage Combustion Model, 3725.7.2 Second-Stage Combustion Model, 3775.7.3 Comparison of Predicted and Measured Combustion Times, 3815.8 Ignition and Combustion of Boron Particles in Fluorine-Containing Environments, 3845.8.1 Multidiffusion Flat-Flame Burner, 3855.8.2 Test Conditions, 3875.8.3 Experimental Results and Discussions, 3885.8.4 Surface Reaction of (BO)n with HF(g), 3935.8.5 Surface Reaction of (BO)n with F(g), 3945.8.6 Governing Equations During the First-Stage Combustion of Boron Particles, 3955.8.7 Model for the &ldquo Clean&rdquo Boron Consumption Process (Second-Stage Combustion), 3965.8. Applications of Turbulent and Multi-Phase Combustion: InhaltsangabePreface xvii1 Solid Propellants and Their Combustion Characteristics 11.1 Background of Solid Propellant Combustion, 41.1.1 Definition of Solid Propellants, 41.1.2 Desirable Characteristics of Solid Propellants, 41.1.3 Calculation of Oxygen Balance, 51.1.4 Homogeneous Propellants, 61.1.4.1 Decomposition Characteristics of NC, 61.1.5 Heterogeneous Propellants (or Composite Propellants), 71.1.6 Major Types of Ingredients in Solid Propellants, 81.1.6.1 Description of Oxidizer Ingredients, 101.1.6.2 Description of Fuel Binders, 121.1.6.3 Curing and Cross-Linking Agents, 141.1.6.4 Aging, 151.1.7 Applications of Solid Propellants, 161.1.7.1 Hazard Classifications of Solid Propellants, 161.1.8 Material Characterization of Propellants, 161.1.8.1 Propellant Density Calculation, 161.1.8.2 Propellant Mass Fraction, , 171.1.8.3 Viscoelastic Behavior of Solid Propellants, 171.1.9 Thermal Profile in a Burning Solid Propellant, 181.1.9.1 Surface and Subsurface Temperature Measurements of Solid Propellants, 181.1.9.2 Interfacial Energy Flux Balance at the Solid Propellant Surface, 201.1.9.3 Energy Equation for the Gas Phase, 211.1.9.4 Burning Rate of Solid Propellants, 231.1.9.5 Temperature Sensitivity of Burning Rate, 251.1.9.6 Measurement of Propellant Burning Rate by Using a Strand Burner, 261.1.9.7 Measurement of Propellant Burning Rate by Using a Small-Scale Motor, 371.1.9.8 Burning Rate Temperature Sensitivity of Neat Ingredients, 411.2 Solid-Propellant Rocket and Gun Performance Parameters, 431.2.1 Performance Parameters of a Solid Rocket Motor, 441.2.1.1 Thrust of a Solid Rocket Motor, 441.2.1.2 Specific Impulse of a Solid Rocket Motor, 481.2.1.3 Density-Specific Impulse, 561.2.1.4 Effective Vacuum Exhaust Velocity, 581.2.1.5 Characteristic Velocity C &lowast , 581.2.1.6 Pressure Sensitivity of Burning Rate, 591.2.1.7 Thrust Coefficient Efficiency, 601.2.1.8 Effect of Pressure Exponent on Stable/Unstable Burning in Solid Rocket Motor, 601.2.2 Performance Parameters of Solid-Propellant Gun Systems, 611.2.2.1 Energy Balance Equation, 641.2.2.2 Efficiencies of Gun Propulsion Systems, 671.2.2.3 Heat of Explosion (Ho ex), 691.2.2.4 Relative Quickness, Relative Force, and Deviations in Muzzle Velocity, 701.2.2.5 Dynamic Vivacity, 712 Thermal Decomposition and Combustion of Nitramines 722.1 Thermophysical Properties of Selected Nitramines, 762.2 Polymorphic Forms of Nitramines, 782.2.1 Polymorphic Forms of HMX, 802.2.2 Polymorphic Forms of RDX, 822.3 Thermal Decomposition of RDX, 882.3.1 Explanation of Opposite Trends on &alpha - and &beta -RDX Decomposition with Increasing Pressure, 902.3.2 Thermal Decomposition Mechanisms of RDX, 922.3.2.1 Homolytic N&ndash N Bond Cleavage, 922.3.2.2 Concerted Ring Opening Mechanism of RDX, 942.3.2.3 Successive HONO Elimination Mechanism of RDX, 962.3.2.4 Analysis of Three Decomposition Mechanisms, 1042.3.3 Formation of Foam Layer Near RDX Burning Sur Homogeneous Propellants, 1583.5.1 Dark Zone Residence Time Correlation, 1663.6 Modeling and Prediction of Homogeneous Propellant Combustion Behavior, 1673.6.1 Multi-Ingredient Model of Miller and Anderson, 1713.6.1.1 NC: A Special Case Ingredient, 1723.6.1.2 Comparison of Calculated Propellant Burning Rates with the Experimental Data, 1753.7 Transient Burning Characterization of Homogeneous Solid Propellant, 1873.7.1 What is Dynamic Burning , 1883.7.2 Theoretical Models for Dynamic Burning, 1903.7.2.1 dp/dt Approach, 1933.7.2.2 Flame Description Approach, 1943.7.2.3 Zel&rsquo dovich Approach, 1943.7.2.4 Characterization of Dynamic Burning of JA2 Propellant Using the Zel&rsquo dovich Approach, 1963.7.2.5 Experimental Measurement of Dynamic Burning Rate of JA2 Propellant, 2013.7.2.6 Novozhilov Stability Parameters, 2023.7.2.7 Novozhilov Stability Parameters for JA2 Propellant, 2033.7.2.8 Some Problems Associated with Dynamic Burning Characterization, 2053.7.2.9 Factors Influencing Dynamic Burning, 207Chapter Problems, 2084 Chemically Reacting Boundary-Layer Flows 2094.1 Introduction, 2104.1.1 Applications of Reacting Boundary-Layer Flows, 2114.1.2 High-Temperature Experimental Facilities Used in Investigation, 2114.1.3 Theoretical Approaches and Boundary-Layer Flow Classifications, 2124.1.4 Historical Survey, 2124.2 Governing Equations for Two-Dimensional Reacting Boundary-Layer Flows, 2164.3 Boundary Conditions, 2214.4 Chemical Kinetics, 2244.4.1 Homogeneous Chemical Reactions, 2244.4.2 Heterogeneous Chemical Reactions, 2264.5 Laminar Boundary-Layer Flows with Surface Reactions, 2294.5.1 Governing Equations and Boundary Conditions, 2294.5.2 Transformation to (&xi , &eta ) Coordinates, 2294.5.3 Conditions for Decoupling of Governing Equations and Self-Similar Solutions, 2324.5.4 Damk¨ ohler Number for Surface Reactions, 2334.5.5 Surface Combustion of Graphite Near the Stagnation Region, 2344.6 Laminar Boundary-Layer Flows With Gas-Phase Reactions, 2394.6.1 Governing Equations and Coordinate Transformation, 2394.6.2 Damk¨ ohler Number for Gas-Phase Reactions, 2404.6.3 Extension to Axisymmetric Cases, 2424.7 Turbulent Boundary-Layer Flows with Chemical Reactions, 2434.7.1 Introduction, 2434.7.2 Boundary-Layer Integral Matrix Procedure of Evans, 2434.7.2.1 General Conservation Equations, 2434.7.2.2 Molecular Transport Properties, 2474.7.2.3 Turbulent Transport Properties, 2514.7.2.4 Equation of State, 2564.7.2.5 Integral Matrix Solution Procedure, 2564.7.2.6 Limitations of the BLIMP Analysis, 2574.7.3 Marching-Integration Procedure of Patankar and Spalding, 2574.7.3.1 Description of the Physical Model, 2584.7.3.2 Conservation Equations for the Viscous Region, 2584.7.3.3 Modeling of the Gas-Phase Chemical Reactions, 2594.7.3.4 Governing Equations for the Inviscid Region, 2604.7.3.5 Boundary Conditions, 2614.7.3.6 Near-Wall Treatment of &tilde k and &tilde &epsilon , 2624.7.3.7 Coordinate Transformation and Solution Procedur Ignition of Boron Particles, 3445.5 Experimental Studies, 3515.5.1 Gasification of Boron Oxides, 3525.5.2 Chemical Kinetics Measurement, 3535.5.3 Boron Ignition Combustion in a Controlled Hot Gas Environment, 3545.6 Theoretical Studies of Boron Ignition and Combustion, 3625.6.1 First-Stage Combustion Models, 3625.6.2 Second-Stage Combustion Models, 3655.6.3 Chemical Kinetic Mechanisms, 3655.6.4 Methods for Enhancement of Boron Ignition, 3675.6.5 Verification of Diffusion Mechanism of Boron Particle Combustion, 3695.6.6 Chemical Identification of the Boron Oxide Layer, 3715.7 Theoretical Model Development of Boron Particle Combustion, 3725.7.1 First-Stage Combustion Model, 3725.7.2 Second-Stage Combustion Model, 3775.7.3 Comparison of Predicted and Measured Combustion Times, 3815.8 Ignition and Combustion of Boron Particles in Fluorine-Containing Environments, 3845.8.1 Multidiffusion Flat-Flame Burner, 3855.8.2 Test Conditions, 3875.8.3 Experimental Results and Discussions, 3885.8.4 Surface Reaction of (BO)n with HF(g), 3935.8.5 Surface Reaction of (BO)n with F(g), 3945.8.6 Governing Equations During the First-Stage Combustion of Boron Particles, 3955.8.7 Model for the &ldquo Clean&rdquo Boron Consumption Process (Second-Stage Combustion), 3965.8. Aeronautic & Aerospace Engineering Maschinenbau Chemic, John Wiley & Sons

Nouveaux livres Rheinberg-Buch.de
Frais d'envoiAb 20¤ Versandkostenfrei in Deutschland, Sofort lieferbar, DE. (EUR 0.00)
Details...
(*) Livre non disponible signifie que le livre est actuellement pas disponible à l'une des plates-formes associées nous recherche.
Applications Of Turbulent And Multi-Phase Combustion - Wiley
Livre non disponible
(*)
Wiley:
Applications Of Turbulent And Multi-Phase Combustion - nouveau livre

2012, ISBN: 9781118130681

ID: 15328113

A hands-on, integrated approach to solving combustion problemsin diverse areasAn understanding of turbulence, combustion, and multiphasereacting flows is essential for engineers and scientists in manyindustries, including power genera-tion, jet and rocket propulsion, pollution control, fire prevention and safety, and materialprocessing. This book offers a highly practical discussion ofburning. A hands-on, integrated approach to solving combustion problemsin diverse areasAn understanding of turbulence, combustion, and multiphasereacting flows is essential for engineers and scientists in manyindustries, including power genera-tion, jet and rocket propulsion, pollution control, fire prevention and safety, and materialprocessing. This book offers a highly practical discussion ofburning behavior and chemical processes occurring in diversematerials, arming readers with the tools they need to solve themost complex combustion problems facing the scientific communitytoday. The second of a two-volume work, Applications of Turbulentand Multiphase Combustion expands on topics involving laminarflames from Professor Kuo's bestselling book Principles ofCombustion, Second Edition, then builds upon the theory discussedin the companion volume Fundamentals of Turbulent and MultiphaseCombustion to address in detail cutting-edge experimentaltechniques and applications not covered anywhere else. Special features of this book include: Coverage of advanced applications such as solid propellants, burning behavior, and chemical boundary layer flowsA multiphase systems approach discussing basic concepts beforemoving to higher-level applicationsA large number of practical examples gleaned from the authors'experience along with problems and a solutions manualEngineers and researchers in chemical and mechanical engineeringand materials science will find Applications of Turbulent andMultiphase Combustion an indispensable guide for upgrading theirskills and keeping up with this rapidly evolving area. It is alsoan excellent resource for students and professionals in mechanical, chemical, and aerospace engineering. eBooks, , Applications Of Turbulent And Multi-Phase Combustion~~EBook~~9781118130681~~Kenneth Kuan-Yun Kuo, Ragini Acharya, , Applications Of Turbulent And Multi-Phase Combustion, Kenneth Kuan-Yun Kuo, 9781118130681, Wiley, 04/13/2012, , , , Wiley

Nouveaux livres Hive.co.uk
MPN: , SKU 15328113 Frais d'envoizzgl. Versandkosten, Livraison non-comprise
Details...
(*) Livre non disponible signifie que le livre est actuellement pas disponible à l'une des plates-formes associées nous recherche.
Applications of Turbulent and Multi-Phase Combustion - Kenneth Kuan-yun Kuo;  Ragini Acharya
Livre non disponible
(*)
Kenneth Kuan-yun Kuo; Ragini Acharya:
Applications of Turbulent and Multi-Phase Combustion - Première édition

2012, ISBN: 9781118130681

ID: 26237172

[ED: 1], Auflage, eBook Download (PDF), eBooks, [PU: Wiley]

Nouveaux livres Lehmanns.de
Frais d'envoiDownload sofort lieferbar, , Versandkostenfrei innerhalb der BRD (EUR 0.00)
Details...
(*) Livre non disponible signifie que le livre est actuellement pas disponible à l'une des plates-formes associées nous recherche.

< Retour aux résultats de recherche...
Détails sur le livre
Applications of Turbulent and Multi-Phase Combustion
Auteur:

Kuo, Kenneth Kuan-Yun;Acharya, Ragini

Titre:

Applications of Turbulent and Multi-Phase Combustion

ISBN:

9781118130681

Informations détaillées sur le livre - Applications of Turbulent and Multi-Phase Combustion


EAN (ISBN-13): 9781118130681
ISBN (ISBN-10): 1118130685
Date de parution: 2012
Editeur: John Wiley & Sons

Livre dans la base de données depuis 17.02.2007 18:08:26
Livre trouvé récemment le 13.11.2016 21:56:41
ISBN/EAN: 9781118130681

ISBN - Autres types d'écriture:
1-118-13068-5, 978-1-118-13068-1

< Retour aux résultats de recherche...
< pour archiver...
Adjacent Livres